PCCA: a program for phylogenetic canonical correlation analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCCA: a program for phylogenetic canonical correlation analysis

UNLABELLED PCCA (phylogenetic canonical correlation analysis) is a new program for canonical correlation analysis of multivariate, continuously valued data from biological species. Canonical correlation analysis is a technique in which derived variables are obtained from two sets of original variables whereby the correlations between corresponding derived variables are maximized. It is a very u...

متن کامل

A canonical correlation analysis

The banking structure-performance relationship has been the subject of many studies (Heggestad, 1979). This paper addresses two problems associated with previous research through analysis of the structure-performance relationship in the savings and loan association industry. One problem is that most studies estimate the structure-performance relationship with multiple regression analysis. The p...

متن کامل

A kernel method for canonical correlation analysis

1. Canonical correlation analysis (CCA) is a technique to extract common features from a pair of multivariate data. In complex situations, however, it does not extract useful features because of its linearity. On the other hand, kernel method used in support vector machine (Vapnik, 1998) is an efficient approach to improve such a linear method. In this study, we investigate the effectiveness of...

متن کامل

Stochastic Canonical Correlation Analysis

We tightly analyze the sample complexity of CCA, provide a learning algorithm that achieves optimal statistical performance in time linear in the required number of samples (up to log factors), as well as a streaming algorithm with similar guarantees.

متن کامل

Nonparametric Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2008

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btn065